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A MODEL FOR PREDICTING BIRD AND ICE
IMPACT LOADS ON STRUCTURES

SECTION 1

INTRODUCTION AND SUMMARY

1.1 BACKGROUND

Hail, ice sheets, and birds are periodically ingested into

aircraft engines during take-off, flight,' and landing operations.

The resulting damage to aircraft components such as engine fan
blades and aircraft windshields can lead to destruction of the

aircraft and crew. One of the most serious threats, especia'ly
in high speed flight at low altitudes, is bird ingestion int the

engine. The elements of a jet engine which are most vulnerp

to impact of ice and birds [foreign object damage (FOD)] are ,e
first-stage fan blades. Conventional jet engines currently

use sustain relatively minor damage with only rare occurrences of

catastrophic failure when birds or ice are ingested. The first

stages of these engines have "thick" titanium or stainless steel

blades and run at moderate rotational speeds (chiefly limited by

the strength-to-weight ratio of the blade materials). However,

advanced engines currently under development require thin blades

with sharp leading edges and high rotational speeds in order to
obtain high speed aerodynamic efficiency. Efforts to increase

the performance of conventional engines envision the use of

lightweight composite materials to achieve higher rotational fan

speeds and higher power-to-weight ratios. Both of these direc-
tions in fan jet engine evolution pose severe design problems for

the successful development of a new generation of FOD-resistant

fan blades.

Progress in the development of FOD-resistant fan blades

has been hindered by the lack of understanding of the mechanisms
of FOD failure, and the lack of a blade analysis tool capable of

predicting the response of a fan blade to ice and bird impact
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loading. The recent development of sophisticated dynamic struc-

tural analysis programs based on the finite-element methodology

gives the fan blade designer the basic tool needed to determine

structural response due to impact loading. What is still required,

in order to use and capitalize on the power of these well-

developed finite-element computer codes for blade analysis, is a

physically correct and accurate model for the bird or ice impact

process.

This report describes the development of a bird and ice

impact loading model which is specifically designed to be used

with finite-element structural analysis computer codes. Two

recent developments from FOD investigations have provided the

information sorely needed to obtain a fundamental understanding

of the FOD impact process. The first, and most important, obser-

vation is that bird and ice impacts are primarily fluid dynamic

in nature and that viscous effects can be ignored. The second

observation, which is particularly important for modelling impacts

on fan blades, has to do with the cutting action of a blade during

the slicing of the impacting object by the leading edge of a blade.

It was observed that no significant loading is attributable to

the cutting action itself; that is, the slicing force is pri-

marily due to the change in direction which the blade imparts to

the slice mass. This second observation basically means that the

entire impact process of a bird, hail, or slab of ice striking a

fan blade can be reasonably modelled by the methods of fluid

dynamic analysis without having to consider the tensile or

compressive strength of the impacting object. 1

Because the model for bird and ice impact loading described

in this report is specifically designed to interface with finite

element transient structural analysis computer codes, the model

capitalizes on the fact that the impacted surface is fully

described mathematically in the structural analysis code at any

instant of time. This fact, coupled with the observation that

the impact process can be modelled as an ideal (non-viscous) fluid

flowing onto the blade surface suggests that the well-developed

2



methods of ideal fluid dynamic analysis (potential flow theory)

can be used to model FOD impacts and that, in particular, the

surface singularity method for solving complex potential flows is

the ideal tool to be used for the impact loading model.

This report describes how the surface singularity technique

is used to compute the loads exerted on a surface during FOD
impacts, and how this technique interfaces with the finite-element

structural analysis method. It should be mentioned here, at the

outset, that the FOD loading model described in this report is not

based on mathematically exact solutions to a well posed potential

flow problem. Rather, because of computer time and memory limi-

tations, only an approximate solution is obtained to model

equations. The equations only approximate the true fluid dynamic

event.

The overall model, while not stated or solved with exact

mathematical rigor, does include descriptions of the most impor-

tant physical phenomena associated with FOD impacts. These

physical phenomena include the following:

1. A true three-dimensional treatment of the impact
process is utilized.

2. The shape and size (i.e., geometry) of the slice mass
is computed.

3. The impacted surface shape is arbitrary and deformation
under load is considered (i.e., coupling between the
loading process and target response is treated in a
physically meaningful manner).

4. Initiation, duration, and termination of the loading
process is described with separate descriptions used
for birds, ice spheres, and ice slabs.

In the remainder of Section I of this report, the approxima-
tions used in the formulation of the loading model are discussed

and justified. Section II describes the methods and analysis

used to generate a description of the slicing process and how the

slicing process is viewed and modelled for birds, ice spheres, and

ice slabs impacts. Section III of the report describes the surface

3



singularity technique and how it is applied in the loading model.

Section IV is basically a description of an FOD loading model

computer program, and how it is interfaced with the finite-element

structural analysis method.

1.2 FLUID DYNAMIC NATURE OF FOD IMPACTS

The impact of a bird or a slab of ice onto a jet engine fan

blade is a rather unusual impact problem. It involves a number

of effects that are normally avoided in impact investigations.

Firstly, all bird and ice impacts on jet engine fan blades are

oblique. Obliquity has the effect of making the problem three-

dimensional. Only under very severe limitations ("spherical"

birds or ice and nondeforming targets) can the process be reduced

to two dimensions. The rigorous analysis of most truly three-

dimensional impact events appears to be beyond the current state

of the art. The only analytic techniques which promise to be

capable of addressing general oblique impacts are finite dif-

ference methods. At the moment they are prohibitively expensive

and only moderately accurate. The second important effect in

bird and ice impacts with fan blades is that, in general, the

impact is a slicing, edge impact. This effect ensures three-

dimensionality, even under the assumptions which render oblique

impacts on a plane surface two dimensional. There appear to be

no proven, existing analytic techniques capable of rigorously

treating an oblique, slicing edge impact. The problem must be

treated with some degree of approximation. When compliant

targets are considered, the degree of approximation required

to obtain a solution increases. This section of the report

describes an approach to the solution of this problem which

incorporates rigorously the fluid dynamic nature of the impact

event.

It is known from several other studies 1 2 that a material

like gelatin with 10 percent porosity adequately simulates the

impact properties of real birds. The early efforts in the deve-

lopment of the substitute bird material for use in bird-impact

studies were reported by Allcock and Collin.
2
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Wilbeck theoretically and experimentally studied the

impact behavior of low-strength projectile materials which he

characterized as soft-body materials. These materials have a

much lower strength than that of typical target materials. An

impact involving a projectile of soft-body material against a

target surface made of aluminum or steel generates stresses that

substantially exceed the strength of the projectile material but

are well below the strength of the target material.

WilbeckI and Barber3 have established in their reports

that, unlike impacts involving projectiles of strong materials,

the impact of projectiles of soft-body materials is dominated by

the tendency of the projectile material to behave like a fluid
during the impact. Such soft-body materials include, in addition

to bird and substitute bird materials, ice in the form of hail or

ice sheets which break off the engine nacelle.

It is useful to review here the rationale for considering

bird and ice impacts as fluid dynamic phenomena. Recognition of
this type of behavior greatly aids in the development of a
theoretical understanding of the impact process.

1.2.1 Observations Based on Experimental Measurements

WilbeckI treated the impact of a bird on a rigid

plate as an unsteady fluid dynamic process and developed a

simplified one-dimensional analysis of a homogeneous right-
circular cylinder of soft-body material impacting normally on a

rigid plate. The analysis showed the entire impact process to
occur in four distinct phases. In the first phase, which is the
initial impact phase, very high shock, or Hugoniot, pressures are

generated. He calculated this pressure, using the Hugoniot rela-
tion for a mixture, together with the shock properties of gelatin.
The results of the peak pressure measurements for the impact of
right circular cylinders of gelatin with 10 percent porosity

reported by Barber, et al.3 showed that the measured pressures
were in good agreement with the impact pressures calculated by

Wilbeck. ,ore recent work by Bauer and Barber4'5 shows even

better agreement. This agreement in the initial phase of the

45



impact process indicates that the hydrodynamic description of the

event is well justified.

After the first phase, the high shock pressures

decay to steady fluid dynamic pressures. These pressures can be

calculated by considering the process as steady jet flow. This
theoretical conclusion is again in agreement with measured

1,3,5
steady-flow pressures.

Furthermore, the calculations of shock decay by

Wilbeck1 have established that for a projectile with a length-

to-diameter ratio larger than a critical value, the shock will

be severely weakened by radial expansion waves and the projec-

tile should undergo complete shock decay to steady flow. Steady

flow would be expected to prevail if the length-to-diameter
ratio of the projectile in the direction of the impact exceeds

approximately unity. For real birds striking end-on, the

length-to-diameter ratio ranges from 2 to 3 and a steady-flow

regime should occur. This conclusion has been amply supported

by the measurements.1
3 ,5

Further evidence of the tendency of the projectile

material to flow radially outward at the impact location is
apparent during the steady-flow phase. As the radial pressures

decrease during the shock decay, shear stresses develop in the

projectile material. If the shear strength of the projectile

material is large enough to withstand these shear stresses, the

radial motion of the projectile will be impeded. On the other

hand, the projectile material will begin to flow if its shear

strength is smaller than the shear stresses developed. The

experiments have confirmed that for real birds, gelatin and ice,
the shear strength is low enough for the pressures generated to

cause the projectile material to flow.

1.2.2 Simplified Potential Flow Model and Comparisons
Of Predicted and Measured Steady-state Pressure
Distributions

The absence of any entrainment of the surrounding

fluid (air) during the impact process led to the recognition

6



that the steady-flow phase of the bird impact would be ideally

suited for modeling by potential flow theory. This, in turn, led
to the development of a three-dimensional potential flow model

3

for predicting the pressure distribution produced by the steady

flow of a cylindrical jet impacting obliquely on a flat plate.
The solution of the three-dimensional Laplace's equation for a
steady, incompressible, irrotational flow was obtained by the
superposition of the two elementary solutions. These elemen-
tary solutions were the uniform flow of a fluid in a round duct,
and the uniform distribution of planar sources over the elliptical
area on the target defined by the intersections of the round duct
and the flat plate. The details of this procedure, which is an

elementary application of the surface singularity technique, are
described in Reference 3.

The predicted steady-flow pressure distribution
calculated showed very good agreement with the measured values
over the central portions of the jet flow.3 However, the
agreement was rather poor near the edges of the jet, and this
descrepancy was essentially due to the fact that the vorticity
effects which are important at the edges of the jet are not

properly modelled by the simple superposition of two elementary
potential flow solutions. Nevertheless, the fact that this

simple model correctly predicted pressure distributions over
the major, and most important, region of the impact zone for a
wide range of impact angles further supports the concept that

bird and ice impacts are essentially ideal fluid flow in nature.

1.3 ASSUMPTIONS AND THEIR JUSTIFICATIONS

It is clear from the foregoing that the impact of soft-body
materials such as birds, realistic substitite bird materials like
gelatin, and ice at the typical velocities of impact may be
analyzed within the framework of hydrodynamic theory. The

impact process is modelled in terms of normal and oblique

impact of a right circular cylinder against rigid and compliant

target surfaces. The theoretical analysis, of course, requires
several simplifying assumptions.

7

i IL I I i I ,



The projectile material is considered to be homogeneous

even when large amounts of porosity are considered. This

assumption would appear to be somewhat unrealistic in the case
of real birds, although extensive test data do not indicate

gross inhomogeneties. 3 The assumption is quite reasonable for
the substitute material (gelatin with 10 percent microballoon) and

ice.

In the analysis of the impact process, the strength of

the projectile material is considered to be negligible. This

assumption is reasonable for the typical projectile and target
materials of interest at the impact velocities of interest.

It is assumed that, at least as a first approximation, the

fluid flow may be treated as incompressible. This is a reasonable

assumption in view of the fact that the measured steady-state
pressures are quite small in comparison to the pressures required
to produce significant density changes in water.

In modeling the steady-flow phase by potential flow anal-

ysis, it is assumed that the flow is inviscid and irrotational.
Since the impact process does not entail any entrainment of the

surrounding fluid, and since the time over which steady flow
exists is small compared to the time required to establish strong

vorticity in the flow, it seems reasonable to treat the flow

field as effectively irrotational, at least over the central

portion of the jet. However, the fact that this simplification

fails to model adequately the edges of the jet is well-recognized.

It must be noted that the presence of a significant amount
of porosity in birds results in a very low sonic velocity (of the

order of 40 m/s for gelatin with 10 percent porosity). Then, for

the typical velocities at which bird impact occurs, the initial

impact process will be largely supersonic. Thus, while the

shock wave is weakened by the release waves and is ultimately
eliminated for a subsonic impact, it will not disappear for a
supersonic impact. The shock propagation velocity will decrease

until it becomes equal to the impact velocity, then a standing shock

will be established. Behind this shock the flow will be subsonic

8



and will follow steady flow streamlines. Wilbeck's calculations1 ,

based upon potential flow theory for a supersonic bird impact at

normal incidence, show that the steady-flow pressure at the

center of impact is almost independent of porosity, suggesting

that the decrease in density due to porosity is offset by the

increase in compressibility.

1.4 SUMMARY DESCRIPTION OF LOADING MODEL

if the target deforms locally during the impact, as well

as translating and rotating, then a loading model capable of

generating the local distribution of loading pressures during

the impact is required. As described previously, birds behave
like a fluid during impact and the distribution of surface
pressure during impact is directly related to the fluid nature
of the event. To successfully predict the surface pressure
distributions on deforming surfaces, it is necessary to utilize

a fundamental fluid dynamic approach. The shear stress distribu-
tions, due to boundary layer (viscous) effects can safely be
ignored for both normal and oblique impacts since the ratio of

maximum normal stress (pressure) to maximum shear stress is of
the order of one over the skin friction coefficient. Therefore,

the problem is reduced to determining the pressure distribution
over the impact area.

If the event is assumed to be dominated by the quasi-steady
flow portions of the impact, as described previously, the process
can be thought of as the flow of a jet onto a surface as illustrated
in Figure 1. (Shock effects, if demonstrated to be important, can
be evaluated separately and superimposed on the quasi-steady
flow results.)

The characteristic (and maximum) pressure in quasi-steady
fluid flow is the Bernoullian stagnation pressure (1/2 pVr2)

and the important independent parameters are the impactor density,

p, and the impact velocity, Vr. The loads are specified if the
stagnation pressure and pressure coefficient distribution can be
determined. As pointed out previously, porosity (of birds) has

9



MAJOR AXIS

MINOR AXIS

0 dSTAGNATION POINT

Figure 1. Oblique Impact

little effect on the stagnation pressure. The zero porosity

density (Of) and incompressible flow assumptions can, therefore,

be applied. Thus, the problem is reduced to the classical

hydrodynamic problem of the flow of a liquid jet onto a surface.

The problem can be further simplified by making the assumption

of irrotational flow: an assumption which is supported by the

fact that in the impact region fluid inertia forces dominate over

viscous forces. With the assumptions of steady, incompressible,

irrotational flow, the problem may be treated as a steady, poten-

tial flow described by Laplace's equaation. A serious complication

remains however. The boundary of the jet is a free streamline

whose position is not known "a priori.* The static pressure is

continuous across a free streamline while the velocity tangent

to this streamline and the stagnation pressure are both discon-

tinuous. Along a free streamline, the magnitude of the velocity

is constant according to Bernoulli's equation. Thus, even though

10



the governing partial differential equation (Laplace's equation)

is linear, the free streamline boundary condition is nonlinear.

These conditions can be described, in two-dimensional flows, with

complex variable theory and exact analytical solutions, and have

been obtained, for two-dimensional jets impacting on flat surfaces.

However, no three-dimensional jet impact flows (such as those of

interest here) have been solved analytically. Not even the case

of an axisymmetric (circular) jet impacting normal to a flat

plate has been solved, because complex variable theory becomes

extremely cumbersome in cylindrical coordinate systems.6 Approx-

imate analytical solutions are available for predicting the

pressure distribution for circular jets impacting normal to flat

plates. 1 7 ,8 Reference 8 contains semi-empirical expressions and
techniques for computing pressure distributions for cylindrical

jets impacting obliquely on flat surfaces. The general problem

of a jet of an arbitrary cross section impacting on an arbitrary

surface can only be solved by numerical methods.

Numerical potential flow solutions for jets (jets bounded

by free streamlines) are very difficult to obtain because the

location of the free streamlines are not, in general, known.

For circular jets, at normal incidence, the position of the free
streamlines can be adequately assumed in order to start a
solution. For oblique impacts, particularly on curved surfaces,

assuming the free streamline position would be a major under-

taking in addition to the considerable task of numerically
solving Laplace's equation in three dimensions. Accordingly,
an approximate numerical solution which would provide a reason-

ably accurate description of the pressure distribution (but not

necessarily satisfying the free streamline condition) was
developed.

Three-dimensional potential flow theory was used to develop
a model for predicting the pressure distribution produced by the

steady flow of a cylindrical Jet impacting on a flat plate. It
was assumed that pressure distribution, as calculated for this
fluid dynamic problem, would provide a reasonable description
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of the steady flow portion of a bird impact. Incompressible,
irrotational flow assumptions were made, but the free streamline
boundary condition was not imposed. The method of superposition

of solutions was used even though superposition is not strictly
valid (although Laplace's equation is linear, the free stream

boundary condition is nonlinear). The numerical approach used

was based on the method of surface singularities.4

The approximate numerical solution involved the super-

position of two elementary solutions to Laplace's equation.
The two solutions used were: (1) the uniform flow of a fluid

in an infinite jet of arbitrary but constant cross-sectional
area; and (2) the uniform distribution of planar fluid sources

over the impact area. The velocity of the fluid within the
infinite jet was considered constant, while the fluid outside

this region was assumed to be at rest. Surface sources were

distributed on the target surface. The strength of the surface

sources was selected to provide the correct boundary condition
at the target (no flow normal to the target surface). The

complete solution to this problem for jets of circular cross

sections impacting obliquely on rigid flat surfaces was devel-
oped by Boehman of the University of Dayton and is presented

in Reference 3.

This model can be used for any arbitrarily shaped impact

surface. The impact area is divided into small flat elements,
and a uniform distribution of sources is assumed to cover each

element. During the analysis of an impact, in which local target
deformation takes place, the deformed target shape in the impact

zone is calculated at each time interval employed in the dynamic

structural analysis. The geometry of the impact zone can then
be provided at each time interval to the loading model, and the

pressure distribution appropriate to the target at that time can
be determined. As the structural analysis calculation proceeds,

the local shape, location, and velocity of the impact area is up-
dated and made available to the loading model. The loading model,

in turn, provides updated pressure and pressure distribution

12



information for the structural response computation. The loading

model is, thus, fully interactive with the structural response

calculation. The duration of the impact is computed by computing
the amount of slice consumed as a function of time and setting
surface pressures equal to zero after the slice is consumed.

*The loading model is capable of detailed interaction with

the structural response model and is capable of dealing with

target translation, rotation, and local deformation. The load/

response coupling modelled in this formulation should be capable

of accurate prediction of pressure for both overall target
response and local deformation.

The principal limitation of the loading model is that
it does not include transient effects. The most significant

transient effect is the shock process. However, the porosity

present in birds appreciably reduces the shock stresses, while

the steady flow pressures are not significantly affected. In

addition, impact obliquity (bird-blade impacts are, in general,
oblique) also reduces the relative importance of shock stresses.

Therefore, it is not obvious that neglect of the shock aspects

of bird impact on blades is a significant deficiency. Another

transient aspect of ice sphere impacts is the variation of a

slice cross-sectional area at the target surface during impact.

This results mainly in a time variation of the impact area. If

the flow remains quasi-steady during these variations (i.e.,

the "velocityO of the variation is low with respect to local

sound speed; probably a good assumption), then the model can be

modified to describe these effects. The size and geometry of
the QjetO which flows onto the target surface must be updated
in time incrementally to describe the variation of impact area

with time.

1.5 SUMMARY

In the current version of the loading model, the pressure
distribution is based on a steady flow analysis. This method

of analysis is extended into a dynamic analysis for deforming
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targets by treating the flow at any instant of time as a quasi-

steady flow using the instantaneous relative velocity between

the bird slice and the deforming target as the characteristic

velocity. The instantaneous shape of the target is used to

define the surface on which impact occurs.

In the analysis of the impact process, the strength of

the projectile material is considered to be negligible. This

assumption is quite reasonable for the typical projectile and

target materials of interest.

It is assumed that, at least as a first approximation, the

fluid flow may be treated to be incompressible. This is a

reasonable assumption in view of the fact that the measured
steady-state pressures are quite small in comparison to the

pressures required to produce significant density changes in

birds or ice.1

By virtue of the incompressible flow and steady flow

assumptions, together with negligible strength of the projectile

material, the problem of predicting soft body impact loads is

amenable to analysis within the following real constraints.

The time required to obtain a reasonable solution must be small
in comparison to the time required to compute the structural

response, and the computer storage requirement for the loa ing

model must be small in comparison to the structural analysis
computer program storage requirements.

Three-dimensional potential flow theory was chosen as the

most appropriate method for modelling the impact process. Our

initial work in using this approach was quite successful.3  In

Reference 3, the method of surface singularities was used to
determine the velocity and pressure fields due to circular jets

impacting at oblique angles on flat rigid plates. This same

technique was used to develop the loading model described in
this report. The method developed in Reference 3 was generalized

to include impact surface curvature and deformation velocity,

arbitrary cross-sectional area of the impacting flow, and a

method for generating planar quadrilateral surface elements
given finite-element surface nodal point locations.
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SECTION 2

DISCUSSION OF BIRD AND ICE IMPACT
ON MOVING AND STATIONARY BLADES

While the discussion in the previous section dealt largely

with the modeling of the soft-body impacts on surfaces (bird-

strike on aircraft windshield, for example), the other area of

major concern in the study of these impacts is the ingestion of

foreign bodies in jet engines resulting in impacts on fan or

compressor blading. Typically, this problem might arise from

the ingestion of a bird or of ice sheets breaking off the

nacelle. The primary consequences of such impact would be

deflection, bending, and rupture of the impacted blades. Although

this can give rise to secondary impacts and related effects, the

present research program is confined only to the primary foreign

object/blade impacts. It is useful to point out that while the

subsequent discussion might explicitly deal with the bird/blade

impact process, the analysis and the conclusions herein are not

restricted to bird impact alone but apply to any foreign body

impact (it is assumed, of course, that we would still be con-

sidering only "soft-body" materials).

The bird/blade impact process differs in an essential way

from the earlier-discussed bird impact over extended surfaces.

Unlike the bird striking an aircraft windshield, for instance, a

bird entering an engine is cut into slices by the chopping action

of the first-stage fan blades. Thus, before one proceeds with

the analysis of the impact process, it is necessary to first

establish the geometry and parameters of the slices of bird, or

ice, formed by a rotating fan stage.

2.1 SLICING MODEL DEVELOPMENT

During 1976 a few experiments were conducted at the Air

Force Materials Laboratory by the University of Dayton Research

Institute to investigate the effects of slicing edge impacts

on the impact loads. Birds were fired over thin wedges and
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cylindrical wires mounted in a ballistic pendulum. From

measurements of the momentum transfer during the slicing process,

estimates of the slicing force could be made. It was found that

the slicing force was predominantly due to fluid dynamic drag

with no significant loading attributable to the cutting action

itself. These experiments suggest that it is reasonable to

ignore the cutting forces in comparison to the forces required

to decelerate and/or change the direction of an impacting soft

body. Therefore, the slicing model development reduces to

simply a geometric problem of determining the dimensions and

weight of a slice. For birds and ice spheres (such as hail)

the velocity of the ingested object is small compared to the

velocity of the aircraft; thus, the object velocity can be

ignored. For ice slabs, such as ice breaking loose from an

engine nacelle, the velocity of the slab relative to the nacelle

is not well defined. A reasonable assumption, at least for short

inlet systems, is to ignore the velocity of the slab relative to

the nacelle. For long inlet systems, it might be possible to

estimate the relative velocity between slab and nacelles by

considering the action of aerodynamic drag forces on an ice

slab after it has broken loose from a forward section of a

nacelle.

2.1.1 Slicing Model Development for Birds

A bird is idealized as a right, circular cylinder

with a length-to-diameter ratio of 2 and the velocity of the

bird, relative to the aircraft, is taken to be equal and opposite

to the aircraft velocity.

In the following analysis, a coordinate system

attached to the blade is used. The bird/blade interaction

geometry, in such a coordinate system, is shown in Figure 2. The

following information is assumed to be known (supplied as input

data to the loading model computer program):

M - number of blades per stage

n - blade rotational speed (rpm)
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Z - distance from the rotational axis of therotor to the point on the blade at which
the center of the impact occurs

- blade orientation angle (defined as the
angle 6 in Figure 1)

Vb - axial velocity of the bird

Wb - bird weight

b - bird density.

An infinite number of slice shapes is possible

for a given set of these input parameters; the shape depends on

the orientation of the bird relative to the blade, and on the

span location on the blade at which the impact occurs. Since

worst case slice shapes are desired (i.e., slice shapes having

the largest possible slice mass), the orientation of the axis

of the bird and the center of impact of a slice are chosen to

produce a slice having the largest possible mass. The largest

slice mass occurs when the axis of the slice is coincident with

the axis of the right circular cylinder. The slice geometry

depicted in Figure 2 corresponds to this worst case situation.

With the bird idealized as a right circular

cylinder with L = 2D, the diameter of the bird is determined

from the bird weight and density as

.2Wb , 1/3

D a(T) (1)

The tangential velocity of the bird Vt is computed

at the impact radius Zi and is given by

2?rnZ
Vt = 0 (2)

and the magnitude of the velocity of the bird relative to the

blade Vr is given by

Vr h vb 2 + vt2 (3)
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The direction of Vr relative to the plane of

rotation of the blade 8 at the impact location Zi is

8 = sin '(Vb/Vr) • (4)

Vr is assumed to have no component in the radial direction. The

impact angle, defined as 8 in Figure 2 is

e = 6 -8s (5)

and the blade spacing (defined as Zi and denoted by S in

Figure 2) is given by

S a 2nzi/N . (6)

The bird slice width, h, is then given by

2wZ i Vbh - Ssin -=  Vr (7)

Referring to Figure 2 we find that the bird-slice weight is

given by

+h/2

WsbinpbL 2 ( ;

-h/2

1 2 -

Wsb = 2bD ) + D sinvii (8)

The use of Equations 2 and 3 in Equation 7 shows

that the bird-slice width at any impact radius depends only on

the blade parameters, N and n, and on the aircraft speed. The

bird-slice weight at any impact radius depends, in addition to

the above three parameters, only on the density and total

weight of the bird.

If h/sin e is greater than the cord of the blade

at Zi , then not all of the slice will impact on the blade.

2.1.2 Slicing Model for Ice Spheres

For ice spheres (such as hail) the axial velocity

of the sphere relative to the blade is taken to be equal and
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opposite to the aircraft velocity, just as for birds. The same
expressions for slice width impingement angle, and Vr applies

as for' birds. The slice weight W is given by
sis

h/2

Wais 2*Pi 1[ 2 2) -

0

or Wsis -2wpi ()()-1h3  (9)

where heD

and P is the ice density. For ice spheres it is presumed that

the diameter of the sphere is a specified quantity along with

the ice density.

2.1.3 Slicing Model for Ice Slab

For slabs of ice the operator specified information

is presumed to be the length of the slab, L, the thickness of the

slab, 4Z, (i.e., how much of the blade span is to be exposed to

the slab) and the axial velocity of the slab relative to the

nacelle (this replaces Vb in Equations 3, 4, and 7). The slice

width, h, is again given by Equation 7 with Vb replaced by the

axial velocity of the slab relative to the nacelle. The slice

mass is then given by

Was - Pi(h)(6Z)L (10)

2.2 BIRD SLICE GEOMETRY PARAMETRIC STUDY RESULTS

Using the equations Aeveloped in paragraph 2.1.2, the bird-

slice parameters were computed for both starling impacts (3-ounce

birds) and big bird impacts (1.5-pound birds). Three different

blade configurations, viz., J-79, APSI, and F-101, are considered

and typical values of the rotor speed, number of blades per stage,

blade orientation angle, and impact radius are used. The input

parameters and the computed quantities are shown for the two cases

20
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of bird weights in Tables I and I. The primary observation from
this parametric study is that bird (and ice sphere) impacts are

highly oblique.

2.3 DURATION OF IMPACT

The amount of a slice consumed at any time during impact

is directly related to the velocity of the slice relative to

the blade (Vr in Figure 1).
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SECTION 3

POTENTIAL FLOW MODELING OF FOD IMPACTS

The impact of a soft body material (bird or ice slices) on

a single blade is modelled using a well developed method of

potential flow theory known as the surface singularity method.

The procedure used to apply the method of surface singularities

to POD impact is based largely on the work of Hess and Smith. 4'9

3.1 GENERAL DESCRIPTION OF THE SURFACE SINGULARITY METHOD

The method of surface singularities has its origin in a

well-known theorem of potential flow theory which, in essence,

states that if the velocity potential or its derivative is

known over the entire boundary of a potential flow, then the

velocity field may be determined throughout the region of the

flow.6  With this theorem, and with the sid of Green's theorem,

Green's equivalent stratum of sources and doublets (singularities)

is developed. This stratum essentially states that the velocity

potential of a fluid in motion can be expressed in terms of

either a distribution of sources and/or doublets over the flow

boundary.6  For nonlifting potential flows, only source distri-

butions need be considered whereas doublet distributions are

required for analysis of lifting potential flows.1 0  Source

distributions are considerably easier to implement and, based

upon the good results obtained in our preliminary work using

source distributions,3 only source distributions are used in

the model described in this report. The method of surface

singularities as used in the POD impact model utilizes a distri-

bution of source density on the boundaries of the flow, and

solves for the distribution of source density necessary to

satisfy specified boundary conditions. Once the source density

distribution is known, the flow velocities on the boundaries of

the flow field and throughout the flow field can be computed.

In order to understand the method of surface singularities,

consider a steady flow of a perfect fluid impinging on a three-

dimensional body as shown in Figure 3. In the initial discussion
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Figure 3. A Three-Dimensional Flow FieldI
of the method, the steady flow will be considered to be infinite

in extent. The modifications required to adapt the method to

flows of finite extent such as jet flows will be discussed later.

3.1.1 Surface Singularity for Flows of Infinite Extent

Let S be the surface of the body and have an
* equation of the form

F(x, y, 2) a (11)

g where x, y, and z are the Cartesian coordinates. For simplicity

assume that the onset flow (defined as the flow field) is a uni-
0 form stream of unit magnitude, and let it be denoted by the constant

vector Vwith components V.,, V.y, and Vwz , respectively, along
the coordinates axes x, y, and z where;

V. . + 2 + v z2 M 1 (12)
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The" fluid velocity at a point may be expressed as

the negative gradient of a potential function *. Which satisfies

Laplace's Equation in the region R' exterior to the surface S,

has a zero normal derivative on S, and approaches the proper

uniform stream potential at infinity. Making use of the super-

position principle, the potential function 0 is viewed as

0 - #" + * (13)

where *. is the uniform stream potential and is equal to

#a n -(Vwxx + Vmyy + Vzz) (14)

and $ is the disturbance potential due to the body. Then *
should satisfy

-0 - 0 in R' (15)

s " grad* n * " V.. O (16)

*'0 for x2 + y2 + z2 . pa (17)

where A denotes the Laplacian operator and 'A is the unit outward

normal vector at a point of the surface.

From potential theory, it can be shown that this

potential may be evaluated in terms of a surface source density

distribution with which the body surface may be considered to

be covered. 6 Then * may be written as

(x,y,z) 7(S) ds (18)

where r(pq) is the distance from the integration point, q, on

the surface to the field point, p, where the potential is being

evaluated as shown in Figure 4. The function a must be deter-

mined so that * satisfies the normal derivative condition,
Equation 16. On the body surface the normal derivative of * is

--2rcP) 4s r(p,q) (q)ds ( (19)
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Figure 4. Notation used in Describing the Potential Due to a
Surface Source Density Distribution

Substituting the value of 30 in Equation 16 gives the integral
-n s

equation for a as

ff 3n r(pq - (20)

This is seen to be a two-dimensional Fredholm integral equation

of the second kind over the surface, S. Once this equation is
solved for a, the disturbance potential 0 may be evaluated from

Equation 18 and the disturbance flow velocities from the deriva-
tives of Equation 19 in the coordinate directions.

Some advantages of this method are: the equation
that must be solved is a two-dimensional one over the body sur-

face rather than a three-dimensional one over the entire exterior
flow field, and the method can be used to calculate flows about
arbitrary bodies. There is no restriction that the body be
slender, analytic, or simply, connected or that the disturbance
velocities due to the body be small compared with the velocity
of the onset flow. However, it is required that the body sur-

face have a continuous normal vector ?.
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3.1.2 Complications of Flow of Finite Extent

For flows of finite extent, such as jet flows,

obtaining an exact solution requires that the boundary stream-

lines of the flow must be included as part of the flow surface,

S, over which sources are distributed. The addition of this

surface poses severe complications. As was mentioned in para-

graph 1.4, the position of the boundary streamline of the jet is

unknown. Furthermore, the jet surface streamlines are a special

type of streamline known as free streamlines along which the

magnitudes of the velocity is constant. The difficulties which

the presence of a free streamline causes in attempting to obtain

exact numerical or analytical solutions were discussed in para-

graph 1.4. Because of the very real computer time and computer

storage limitations that had to be considered in the development

of the present model, it was not feasible to attempt an exact

numerical solution. Fortunately, reasonably accurate pressure

distributions can be obtained with the surface singularity method

without attempting to satisfy the free streamline boundary con-

dition exactly. This is accomplished by use of a suitable model

for the onset flow. Thus, in the FOD loading model discussed in

this report, sources are distributed only over the surface on

which the impact occurs. The model thus utilizes the same basic

procedure as that described in paragraph 3.1.1 for flowif of

infinite extent, except that the onset flow velocity distribution

is now not a constant velocity field but is a spatially varying

velocity field. As is shown in Reference 3, even the simplest

possible onset flow model, which has a uniform distribution of

velocity over the cross sectional area of the impacting object

and zero velocity everywhere else, gives surprisingly good

results.

3.2 DETAILED DESCRIPTION OF THE COMPUTATIONAL PROGRAM

In this section, a detailed description of the computer

program used to solve for the source density distribution, the

disturbance potential, and the disturbance flow velocities along

with their analytical equations are presented.

28



3.2.1 The Body Surface Approximation

To allow arbitrary bodies to be considered, it is

required that the body surface be specified by a set of points

in space called input points. Then the body surface is approxi-

mated by a large number of small plane quadrilateral elements.

These elements are formed from the original points defining the

body surface as shown in Figure 5.

In the original application of the surface singu-

larity method to FOD impacts ' rectangular surface elements were

used. However, in the development of that model no attempt was

made to interface it with a finite element structural analysis

program, and the impact surface was flat and assumed to be rigid.

Thus, rectangular elements were preferred due to their computational

simplicity. In that model, the coordinates of the center of each

element, and the lengths of the long and short sides, were read in

as input data. The present model is designed specifically to be

interfaced with finite element structural analysis computer

zx

Figure 5. The Approximate Representation of the Body Surface
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programs and is designed to handle impacts on arbitrarily curved

surfaces. Quadrilateral elements provide a better approximation

to an arbitrarily curved surface than rectangular elements and

are much easier to construct from the finite element represen-

tation of a curved surface. In the model, it is required that the

coordinates of all nodal points on the impacted surface be

supplied to the loading model. Specifically, the nodal points

in the finite-element program become approximate locations of

the null point (defined to be the point where the quadrilateral

element induces no velocity in its own plane) around which the

plane quadrilateral elements are constructed in the potential

flow analysis. This greatly facilitates the coupling of the

finite-difference loading model and the finite-element struc-

tural code. Null points are the points at which, with the least

amount of computational effort and with the greatest accuracy,

the surface pressures can be computed in the loading model.. The

surface nodal locations are the points where the finite element

structural code requires the surface loads to be defined.

Input to the loading model consists of the coordi-

nates of the set of finite element nodal points defining the

surface of the impacted object. These coordinates are given in

the reference coordinate system, that is, the coordinate system

used to describe the shape of the impacted surface before impact

occurs. Each nodal point is identified by a pair of integers, m

ard n, where n identifies the column of points to which it belongs

and m defines its position in the column. For a fan blade analysis

the undeformed blade is imagined first to be cut into (NS-l) strips

by NS cuts (n-lines) proceeding from root to tip with these cuts

orientated basically along chord l.nes. Then the blade is cut

into (NC-l) strips by NC cuts (m-lines) proceeding from the

leading edge to trailing edge. The integer n thus ranges from 1

to NS, and the integer m ranges from 1 to NC. The intersections

of these cuts define the initial position of the surface nodal

points (before impact).
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Quadrilateral elements are computed from groups of

four neighboring nodal points which, for nonflat surfaces, do

not generally lie in a plane. Consider a nodal point identified

by (m,n) which is not on the first or last m or n lines (boundary

lines). Nodal points lying on boundary lines require special

treatment which is discussed later in this section. The first

step in defining a quadrilateral is to locate four points around

the nodal point (m,n) which can be thought of as 'corner" points

for a surface with four edges but which, in general, will not be a

plane quadrilateral. These four "corner" points are located

midway along each of four vectors connecting the nodal point

(m,n) with nodal points (m-l,n-1), (m+l,n-l), (m+l,n+l), and

(m-l,n+l). These points are labeled 1, 2, 3, and 4 respectively

as shown in Figure 6 and will hereafter be called mid-node

points. The coordinates of the mid-node points are:

/ 9 surface node

~~Finite Elements//

•denotes midway point

~on vector connecting
node (re,n) with a
neiqhborinq node

Figure 6. Nodal Numbering System and Mid-Node Point Formulation
And Numbering
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1: X1 1 Y3, Zi

2: X2 ' Y2 ' Z2

3: X3 ,Y,2II 3 " 3' Y3' Z3

4: X4' Y4 ' Z4

It should be noted that once a mid-node point is

defined for one element, it can be used in the formation of up
to three neighboring elements. Therefore, it is not necessary

to actually construct all four vectors shown in Figure 6 for

each nodal point.

Nodal points lying on boundary lines obviously do
not have four neighboring nodal points. For nodal points on the

leading edge of the blade (m-1), the node point is not used as
the null point. For these points mid-node points 1 and 4

corresponding to node point (2,n) are used to define mid-node

points 2 and 3 for the (l,n) leading edge node point. *CornerO

points 1 and 4 are defined by projecting half the distance to

neighboring leading edge node points if they exist. If they do

not exist (nodes (1,1) and (l,NS)], then they are artificially

generated by projecting off the blade along the leading edge by
a distance equal to one-half the distance to the leading edge

neighbor which does exist.

Mid-node points for nodes lying on the other three

boundary lines are formed from those mid-node points which they

share with other nodal points. Any missing *corner" points are

formed by projecting off the surface of the blade by an amount

which does not exceed one half the distance to its nearest

neighboring nodal points.

3.2.2 Formation of the Plane Quadrilateral Surface Element

The plane quadrilateral surface elements are formed
from the four appropriate mid-node points as follows. First the

two *diagonal* vectors T1 and T2 are formed (Figure 7). Vector

T, goes from I to 3 and vector T2 goes from 2 to 4. in general,
these vectors are not orthogonal and do not intersect. Their

components are:
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Figure 7. Formation of an Element From Four Mid-Node Points

Tlx X3 - X1 Tly a Y3 - ¥l Tz " Z3  - z1

T2x = X4 - X2 T2y = Y4 - Y2 T2 z ' Z4 - Z2

The cross product, N, of these vectors divided by its own length
is taken as the unit normal vector, n, to the plane of the element.

2 1 (22)

The components of N are:

Nx = T2yTlz - TlyT2z

Ny - T xT2z - T2xTlz (23)

Nz y T2xTly - T1xT2y

The components of the unit normal vector n are:
Nx

nx " N

N N
ny -_0 (24)

N
z

nz 33-
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where N -/Nx2 + Ny 2 + Nz2 (25)

To completely specify the plane of the element a point in the

plane is also required. This point is taken as the point whose

coordinates X, Y, z are the averages of the coordinates of the

four mid-node points, i.e.,

X T(X1 + X+ + x4)

Y 1 (Y +  2 + ¥ + Y4) (26)
1 + Z2 4 3 Z4 )

Now the mid-node points will be projected into the plane of the

element along the normal vector. The resulting points are the

corner points of the plane quadrilateral source element and

these, rather than the mid-node points, are the points used in all
calculations. The signed distance of the k-th mid-node point

(k-1,2,3,4) from the plane is

dk nx( Xk) + n ( - 4k) + nz(C - zk ) (27)

and the coordinates of the corner points in the reference coor-

dinate system are given by

Xk- Xk + nxd k

Yk Yk + nydk (28)

z k Z k + nzdk

3.2.3 Formation of the Element Coordinate System

It is convenient to derive and to use the formulas

for the velocities induced by a quadrilateral source element of

uniform strength at points in space assuming the element to lie

in a coordinate plane. This necessitates constructing a coordi-
nate system having two of its axes in the plane of the element.

Thus, three mutually perpendicular unit vectors are required, two
of which are in the plane of the element and one of which is

normal to it.
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The unit normal vector is taken as one of the unit

vectors, and the unit vectors in the plane of the element are

denoted by t and t t is taken as T divided by its own

length, i.e.,

Stl Tlx

t a (29)
Tlz

tlz " -T7

where

T1 - Tlx2 + Tly2 + Tlz 2 (30)

The vector t 2 is defined by t 2 - ' x t, so that its components are:

t2x -nytlz nztly

t2y- nzt lx -nxtlz (31)

2z- nxt - ylx

To transform the coordinates of points and the

components of vectors between the reference coordinate system

and the element coordinate system, the transformation matrix is

required.

The elements of this matrix are the components of

the three basic unit vectors, tl, t2, n.

The transformation matrix is thus the array

a11 - tlx a12 -tly a13 - lz

a21 - 2x a2 2  t2y a23 - 2z (32)

a31 -n x  a32 any a33 -n z

To transform the coordinates of points from one

system to the other, the coordinates of the origin of the ele-

ment coordinate system in the reference coordinate system are
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required; let these be denoted Xo, Yo'.Zo" Then, if a point has

coordinates X' Y z in the reference coordinate system and

coordinates X, Y, Z in the element coordinate system, the

transformation from the reference to the element system is

X - a11 (X -X0 ) + a1 2 (Y'-Y 0 ) + a13 (Z'-Z O )

Y a2 1 (X'-X o ) + a22(Y'-Y O ) + a2 3 (Z'-Zo) (33)

Z = a3 1 (X -X0 ) + a3 2 (y -Y0 ) + a3 3 (Z -ZO)

while the transformation from the element to the reference system

is

X' K 0 + a11X + a21Y + a 31Z

Y Y0 + a12X + a22Y + a32Z (34)

z= z0 + a1 3X + a2 3Y + a 3 3 Z

The origin is temporarily taken as the point whose coordinates

are the averages of the four mid-node points, i.e., the point

with coordinates 7, Y, T in the reference system , and is used to

find the coordinates of the centroid of the area (Figure 8).

The corner points are transformed into the element coor-

dinate system based on the average point as origin. Their coor-

dinates in the element coordinate system are denote by k*, k , 0.

Because they lie in the plane of the element, they have a zeroC

coordinate in the element coordinate system. Using the above
transformation these coordinates are:

Ck* = all(Xk-X) + a1 2 (Yk-Y) + a 3 (Zk-z)
T35

=7k* a21 (Xk-x) + a2 2 (Yk Y) + a23 (Z k-

The origin of the element coordinate system is now transferred to

the centroid of the area of the quadrilateral. With the average

point as origin, the coordinates of the centroid in the element

coordinate system are: 4

T1 274 [4 (171 1 72~ +C 2 74  77) 36
co~.7 7 77.. 7
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AVERAGE 773)
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I

I

(C4 ,74)

Figure 8. A Plane Quadrilateral Element, Transfer of Origin from
Average Point to the Centroid

These are subtracted from the coordinates of the corner points in

the element coordinate system based on the average point as ori-
gin to obtain the coordinates of the corner points in the element
zoordinate system based on 'the centroid or origin, i.e.,

Ck Ck* "= o = 1,2,3,4 (37)
i17k = 17k* " 170

Since the centroid is to be used as the origin of the element

coordinate system, its coordinates in the reference coordinate

system are required for use with the transformation matrix.

These coordinates are:

xo aY+ a11co + a 217o
o 0 a + a124o + a22 o (38)

z Z+ a 1 +
Z0 = 13C o + 42317b
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3.2.4 Determination of Null Point

It is necessary to select a particular point on

each quadrilateral element where the normal velocity will be

required to vanish and where the flow velocities will be computed.

This point is taken as the point where the quadrilateral induces

no velocity in its own plant. It is designated the null point.

The x and. y coordinates of this point, in the element coordinate

system, are obtained as the solution of two simultaneous, non-

linear equations. These equations are

Vx(X,Y) - 0
(39)

Vy(XY) - 0

where Vx and Vy are the velocity components induced by a

quadrilateral source element of unit source density. They are

derived from the fundamental potential function. The general

equations of the induced velocity components are:
4

, -,. /,+=- ,k _-IL°-(r 2+r-d2 )
:r + ,. ,lo(r. .-
l+r +d1 d r +r +d'3

94 7-'73 r 3+r4-d \ 34 _r, - <',rl 4l (40)

+ d---lor+r +d + d o 1t= + d,<,34 r3 + 4 <34  4 '4+r 41

S -C C2 j gri1+r 2 -d 12' C 2-C 3 0 r 2+r 3 -d23'
y 1 Vl 2  2 / 2 ( r2 3 2 3

C3 C4  r 3 +r 4 -d 3 4  + l 4 +r-d 4  (1)34 ( 3 +r 4 +d 34 -lo 41 r 4+r 1dl

tan -l(m 3e31 hl) - tan-l(M1e42-h2)

+. tan-l(m23 e2h 2) _tan (23e 3h 3
" 2 zr 3 / (42)

+ ta-- tan-' Zr

4+ ta-1/M41 e4-h 4) tan-l~m4le 17h,)
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where d1 2 - V'(C2 -C 1 )2 + ('72 " 7l)2

d 23 = .A13 -C 2) ( 13 2)
(43)

d 3 4 = V1C4 -C 3  (174 -73)

41 " I( -C 4 )2 + ('i "

where 12 2 - 171 "23 72

l2 -C 2 -. 23  C3 _C2

? 4 7 3 ' 1( 4 4 )

m34 4 C3 41 " 1Z -

and

drk =(X -k 2 + ( -7k) + knl,2,3,4 (45)

e k a Z2 + (X - k12 k-,2,3,4 (46)

hk - (Y -1?k)(X -_Ck) k=1,2,3,4 (47)

with Z = 0 and &k, k set equal to the coordinates of the corner

points, which were obtained in the previous section, these
equations are solved by means of an iterative procedure, which

utilizes analytic expression for the derivatives f Vx and V y.
With the notation ( )x U ,/x' ( )y a a/ay, the iterative proce-

dure is as follows. Let X and Y denote the p-th approximation
p p

to the X and Y coordinates of the null point and let the notation
[ ](P) denote the quantity in brackets evaluated at X = Xp, Y - Yp.

Once the p-th approximation has been found, the (p+l)-th approxi-

mation is obtained by solving the following pair of linear

algebraic equations for Xp+ I, 'p+l*

[(Vxl x IlPl(Xp+ 1 - Xp ) + [(Vx) y](P)lYp+1 - Yp) =-IVx]  )

(48)

[(Vy) x(P)(Xp+ 1 - X ) + ((Vy) J(P)(Yp1 -Yp) U -[V] (p)
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The first approximation is X - Y - 0. The iterative procedure is

terminated when the induced velocity components at the approxi-

mate null point are both less in absolute value than a prescribed

value. This value is set at 0.001.
3.2.5 Formation of the Vector Matrix of Influence

Coefficients

The velocities induced by the quadrilateral source

elements at each other's null points must be computed. This is

done under the assumption that the source density on each element

is of unit strength. The final result of this calculation is the

complete set of the velocities induced at each null point by

every quadrilateral element. This array may be thought of as a
"matrix of influence coefficients," the elements of which are

vectors in three-dimensional space.

The basic caluclation is the computation of the

velocity components induced at the null point of the i-th element

by a unit source density distribution on the j-th element.

The coordinates of the i-th null point X np', Ynp '
Znp are transformed into the j-th element coordinate system

obtaining Xnp, Ynp, Znp. The transformation is accomplished by

means of Equation 33. The velocity components are evaluated from

Equations 40, 41, and 42. In these formulas X, Y, Z are replaced

by XnpI Ynp' Znp and & k, nk are the coordinates of the corner

points of the j-th element.

In evaluating these velocity components, V x and Vy

cause no trouble. The component Vz requires special handling in
certain cases. As Znp-.0, Vz-0 if the null point is approaching a

point in the plane outside the boundaries of the quadrilateral.

However, Vz-21(Sign Z np) if the null point is approaching a point

within the quadrilateral.

Due to round off error which occurs while making

the transformation from reference to element coordinate system,

Znp may have small values with either sign and the calculation of

40
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Vz will give a value different than what it should be (i.e., 0 or

2w). To avoid this error, the absolute value of Znp is tested

before velocities are computed and, if it is less than some small

prescribed number (in this case it is the smaller diagonal/100),

which is, nevertheless, large compared to the expected round-off

error, Znp is set equal to zero and V is set equal to zero for

points outside the quadrilateral or equal to +2ff for points inside

the quadrilateral. Another situation that may cause trouble occurs

when the slope of a side of the quadrilateral is infinite. To

avoid difficulties each of the quantities (2- i), (C3-E2), (t4-3),

and (i-) are tested to determine whether they are zero, and if

any one of them is zero, the two inverse tangents corresponding
to that side are set equal to zero. It should be mentioned that

the inverse tangents in Equation 42 are evaluated in the normal

range -w/2 to +w/2.

The induced velocity components V., Vy, Vz are in

the element coordinate system and must be transformed to obtain

the components Vx ' V , Vz in the reference coordinate system.

This is done by using Equation 33 where V., Vy, Vz replace X, Y,

Z, respectively, in these equations, and Vx , Vy V ' replace(X, V0 )replacy

(XI-X O ) , (Y'-Yo), (Z'-Z O).

To obtain a set of linear 1gebraic equations for

the unknown values of the source density on the elements, the

first step is to calculate the normal velocities induced at each

null point by the various elements, each of which is still

assumed to have a unit source density.

The normal velocity induced at the null point of

the i-th element by a unit source density on the j-th element is

obtained by taking the dot product of Vii with the unit normal

vector of the i-th element n V is defined as the vector

velocity induced at the null point of the i-th element by a

unit source density on the J-th element. This induced normal

velocity is denoted Aij. It is given by

A - . - nV x ' n ' + nizVz' (49)

1j 13 xx i) y 1
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The result is a scalar matrix whose elements are the normal

velocities induced at the various null points by the various

quadrilateral elements with unit source density. This matrix

is the coefficient matrix of the required set of linear equations,

since multiplying this by the column matrix of the unknown values

of the source density on each element gives a column matrix whose

elements are the true normal velocities induced at the null

points by the entire approximate body surface. The right hand

sides of the linear equations are the negatives of the normal

components of the onset flow at the various null points.

3.2.6 Designation of the Onset Flow

The onset flow is used to form a right hand side

for use with the coefficient matrix. The onset flow is designated

by the vector Vi and must be defined at each null point i. This

vector will be a spatially varying function for flows of finite

extent. It also varies with time for a deforming surface.

Presently, the loading model uses the simple onset flow model

described in paragraph 3.1.2 modified to include the effect of

the displacement velocity of the deforming blade. The components

of onset flow relative to the blade are given by

V"x = Vt + Ux

Vy - v b + Uy (50)

V.z - Uz

for all null points which lie under the projected area of the

impacting object on the blade. The onset flow is specified as

zero for all other null points. The onset flow velocity components,

given by Equation 50, are defined in the reference coordinate

system. For a blade analysis, the following reference coordinate

system is used.

The positive X direction is in the direction of

rotation of the rotor, the positive y direction is looking for-

ward along the axis of the engine, and the Z direction is in the

plane of rotation of the rotor with positive Z going from root

to tip. The X, Y, and Z directions are shown in Figure 2. In

Equation 50, Ux, Uy, and Uz represent the local deformation

42
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velocity components of the blade and are supplied to the loading
model by the structural analysis program.

More sophisticated onset flow models have been

developed but have not as yet been incorporated into the loading

model. These more sophisticated onset flow models attempt to

take account the spreading of the jet as the impact surface is

approached and, thereby, give a better description of the pressure

distribution at the edges of the impact area. In Section 4, a

more sophisticated onset flow model is presented which is based

on two-dimensional jet theory.

3.2.7 The Linear Algebraic Equations for the Values of

the Surface Source Density

3.2.7.1 Formulation of the Equations

Now the values of the surface source

density on the elements will be obtained as the solution of a

set of linear algebraic equations. Recall that the source den-

sity is assumed constant on each quadrilateral element. Thus,

there are N unknown values of the source density, where N is

the number of elements formed from the input point. The total

normal velocity is required to vanish at the null point of each

element formed from the nodal points; therefore, there are N

equations for the N unknown values of the source density. The

total velocity induced at the i-th null point by all quadrila-

teral elements is
N

Nia - Aijaj (51)

The normal component of the onset flow at the i-th null point

is the dot product of the onset flow vector and the unit normal

vector of the i-th element, i.e.,

V n - V ix.xi + n + n i Vz (52)

The total normal velocity at the i-th null point is the sum of

Equations 51 and 52. Thus the requirement that the normal velo-

city vanish at all null points gives the following set of linear

equations for the values of the source density
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N

I A ij j -Vn i  (53)

j=l

By solving this set of equations a complete set of source den-

sities is obtained for this onset flow.

3.2.7.2 Solution of the Equations

If the impacted surface is perfectly

flat, all of the off-diagonal members of Aij are identically

zero and the solution of Aij is trivial; no matrix operations

are involved. For surfaces which are highly curved, the off-

diagonal elements are generally small compared to the diagonal

elements and matrix iterative solution procedures such as the
4Seidel procedure must be used. This procedure gives good con-

vergence and requires less computer time than direct elimination

methods particularly when more than 200 elements are used. The

Seidel procedure did not prove to be a very good method, however,

for blade analysis. Difficulties with convergence were experi-

enced with blade surfaces which were nearly flat before impact

but which became slightly deformed and concave during the early

stages of impact. In this situation many of the off-diagonal

elements are of the same order of magnitude as diagonal elements

and are not all of the same sign. Also, because of program

storage limitations imposed on the loading model, it was not

feasible to consider more than 80 to 100 elements. Therefore,

a direct elimination method of solution is used to solve the

equations. The method used is Gaussian elimination with pivotal

condensation. A subroutine called CSOLVR, which was developed

by one of the authors (Boehman), is used in the loading model

computer program. This subroutine was originally developed to

solve difficult linear systems such as those encountered in

laminar, compressible boundary layer stability theory, and in

large systems of chemical equilibrium reaction equations solved

by the Newton-Raphson search procedure.

3.2.8 Calculation of Total Flow Velocities and Pressures

Once the values of the surface source density have

been found, the actual flow velocities at the null points are
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calculated by multiplying the elements of the "matrices of
influence coefficients," which are the induced velocity components

that were calculated assuming a unit value for all source densi-

ties, by the corresponding true values of the source densities,

and summing all such products that are appropriate for the null

point in question. To the results of this summation must be

added the proper components of the onset flow. Recall that the

velocity induced at the null point of the i-th element by a

unit source density on the j-th element is the vector Vij with
components Xij, Yij' zij corresponding, respectively, to V ,

V , Vz . Let the total flow velocity at the null point of the

i-th element be denoted by the vector Vi with components Vix ,

Viy, Viz* These components are given by

Vi x YX . + V

Viy = Yij 0j + VWY (54)

N
V iz I z iJ j + VZ

These equations are evaluated for every null point. The magni-

tude of the velocity Vi at each null point is then computed from

Vi - Vi 2 + Viy2 + Viz2 (55)

and finally the pressure at each null point is computed. The

loading pressure at any null point is based on an application of

Bernoullis equation in the form

Pi M 1 b(V 2 _ Vi 2 ) (56)

where V R in this equation is defined as the magnitude of the

onset flow evaluated at the coordinates of the center of impact.

With the simple onset flow model, negative

pressures will be obtained for flat or nearly flat surfaces at
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null points lying just outside of the projected area of the

slice on the blade. 3 This occurs because the tangential velocity

induced by an element in its ow, plane approaches infinity at

the edges of the element. When the surface is flat, or nearly

flat, the value of the source density for all null points lying

outside of the immediate impact area is zero so that the net

tanyt..tial velocity computed for these null points is heavily

biased toward the tangenti-l velocity induced at these null

points by their net,&est neighbor elements which lie under the

projected area of the slice on the blade. In the current ver-

sion of the loading model, if a negative pressure is computed,

the negative value is ignored and a zero pressure is assumed

instead.

3.2.9 Summary Description of Coueling Between Loading
Model and Structural Dynamic Analysis

In loading used for any arbitrarily shaped impact

surface, the impact area is divided into small flat elements,

and a uniform distribution of sources is assumed to cover each

area. At the beginning of impact, an initial pressure distri-

bution is computed for the undeformed blade. During an impact

in which local deformation takes place, the deformed shape of

the impact zone is calculated in the dynamic structural analy-

sis. After significant deformation has occurred, the geometry

of the impact zone is provided to the loading model. The loading

model is then used to calculate a new pressure distribution.

As the structural analysis calculation proceeds, the local shape,

the location, and the velocity of the impact area are updated

and passed to the loading model at appropriate time intervals.

The loading model, in turn, provides updated pressure distribu-

tion information for the structural response computation. The

loading model is fully interactive with the structural response
calculation. The duration of the impact is computed by keeping

track of how much of the slice has been consumed during each

time interval.

The loading model is capable of detailed inter-

action with the structural response model and of dealing with
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target translation, rotation, and local deformation. The load-

response coupling modelled in this formulation is capable of

accurately predicting both overall target response and local

deformation.

The principal limitation of the loading model, in

its present form, is that it does not include transient effects

of shock wave formation and decay. In birds, porosity appre-

ciably reduces the peak pressures without significantly affecting

steady flow pressures. 3 ,5  In addition, impact obliquity reduces

the relative .importance of shock pressures. Therefore, it is

not obvious that neglect of the shock aspects of bird impact on

blades is a significant deficiency. Nevertheless, eftorts are

currently being made to develop a simple, first order model

for predicting the build up of the peak pressure to the Hugoniot

pressure and the decay of pressure from the peak pressure to

the steady flow pressure by the combined action of release waves

in the soft body and motion induced in the target material by

the shock wave transmitted through the target material.

Preliminary work along these lines shows that the

main effect of shocks during impacts on thin blades is to impact

an initial deformation velocity to the blade material exposed

to the slice. Thus, one approach to handling shock effects may

be to simply model the initial impact process by imposing an
initial velocity boundary condition to the blade material in

the structural analysis. The appropriate initial velocity toI
be imported can be computed from a combination of Hugoniot

pressure variables, dimensions of the slice, thickness of the

blade material, and compressibility properties of the blade

material.
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SECTION 4

FOD LOADING MODEL COMPUTER PROGRAM

In this section the procedures used to translate the theo-

retical aspects of the surface singularity technique into a

working computer program are presented. The input data and

program options are described. Some details are given on how

the basic loading model is interfaced with finite element

structural analysis programs. Some results obtained with the

loading model in the form of pressure distributions are presented

along with comparisons to experimental results.

Some further theoretical developments associated with

improved onset flow models are also presented. In particular,

working equations for an onset flow model based on two-dimensional

oblique jet impacts are developed and presented.

The loading model is set up so that non-slicing impacts

can be considered as well as slicing impacts. No detailed

experimental data, particularly pressure distributions, are

available for slicing impacts. Thus, a non-slicing impact

capability was created for the loading model to validate

the output of the loading model computer program. Also,

non-slicing capability was desired for investigating FOD

impacts on non-rotating turbine engine components as well as

aircraft external surfaces.

4.1 REFERENCE COORDINATE SYSTEM

While in principle any Cartesian coordinate system can be

used with the surface singularity technique as developed in

Section III, it was nevertheless found to be advantageous to

work with a specific coordinate system for handling slicing

impacts.

The coordinate system used in this report is one commonly

used in the aircraft engine industry and is defined as follows:

the Z axis is taken in the plane of rotation of the rotor with
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z = 0 taken at the axis of rotation with positive z pointing

from root to tip, the Y direction is parallel to (but not

coincident with) the axis of rotation of the rotor and is

positive when directed from the rear of the engine toward the

front or inlet. The X axis is in the plane of rotation of the

rotor and is perpendicular to the Z-axis. The positive x direction

is defined so as to give a right-handed coordinate system. For

a rotor viewed from the rear of the engine looking forward,

positive rotational speed is defined as clockwise rotation.

Thus, for positive rotational speed, the positive x-axis points

in the direction of rotation. In short then, z is the radial

direction, y is the forward dirsction, and x is the tangential

direction. The origin of the coordinate system, except for

z - 0, is not fixed to a specific location. With the coordinate

system so defined, the program user can,in most cases, input

a blade shape directly from design drawings generated in the

aircraft engine industry.

4.2 DESCRIPTION OF INPUT DATA REQUIREMENTS

The primary input variables have already been defined in

Sections II and III. They are restated in this section along

with the symbols used in the loading model to define these

quantities.

4.2.1 Input Data for Slicing Impacts

There are three options for slicing impacts. The

input variable ISLICE is used to define the type of object

being sliced. ISLICE - 1 denotes a bird, ISLICE - 2 denotes an

ice sphere, and ISLICE - 3 denotes an ice slab. The definitions

of the input variables for a slicing impact of a bird are

given in Table III. Most of the impact variables defined in

Table III are used in all three options. For an ice sphere

only the definitions of Vb and Wb are changed. For an ice

sphere, Vb is taken as the axial speed of the sphere (aircraft

speed) and Wb is the mass of the ice sphere. For an ice slab the

user must input for Vb the axial velocity of the slab relative
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TABLE III

DEFINITION OF INPUT DATA FOR SLICING BIRD IMPACT.

Symbol Used Symbol Used
Variables in Report in Computer Program

No. of blades per stage N NBL

Blade rotational speed (rpm) n RPMY

Axial speed of the bird Vb  VB
(user generally specifies
this as the aircraft
speed)

Bird weight Wb  WB

Radius on rotor at which Z RI
impact occurs

Time at which impact begins TIM

Coordinates of blade lead- (XL, YL)
ing edge at Z

Coordinates of blade trail- (XT, YT)
ing edge at Z

No. of chordwise cuts on the NC NC
blade for the purpose of
generating a grid system

No. of spanwise cuts on the NS NS
blade for the purpose of
generating a grid system

Mass density of the bird PL RHOB

to the engine nacelle (a number generally less than the aircraft

speed but greater than zero). Also for an ice slab the user must

supply as input the length of the ice slab (BL) and the height

of the slab (DB); where height denotes how much of the span of

the blade is to be exposed to the slab. The thickness of the

slice taken out of the slab is not an input number but is taken

to be the maximum possible slice width, h, computed in equation

7.

The coordinates of the leading and trailing edge

points defined in Table III are used to define the blade orienta-

tion angle 6 defined in Figure 2.
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6 - tan ((YL-YT)/(XL-XT)] 57

4.2.2 Input Data for Non-Slicing Impacts

For non-slicing impacts, a right circular cylinder

with L - 2D is assumed. A value of one for NEL should be inputed

to signal that non-slicing impact is occurring. The location

of the center of impact (XI, YI, ZI) is then read in as input

data along with the three velocity components of the projectile.

4.3 MAJOR PROGRAM VARIABLE NAMES

A list of the major program variable names is given in

Appendix A.

4.4 INTERFACING DETAILS

In the present version of the loading model program the

following decisions are assumed to be made in the structural

analysis program:

(1) the time at which a pressure distribution is to be
computed by the loading model

(2) the number of chordwise cuts NC and spanwise cuts NS
to be made on the blade for the purpose of generating
a grid system on the impact area

(1) the surface nodal locations where pressures are to
be computed

Whenever the structural analysis computer program decides

that an updated pressure distribution is required, the above

information is supplied to the loading model computer program

(called BPRESS). The displacement velocities at the surface

nodal locations where pressures are to be computed are also

supplied to BPRESS. With this information BPRESS computes the

following: first, the corner points of the plane quadrilateral

elements are computed according to the scheme outlined in

Section 3.2.1. Then the element on which the center of impact

occurs is determined. This is done by searching for the one
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surface element which is intersected by the line defining the

path of the axis of symmetry of the impacting object. Next

the velocity of the impacting object relative to the element

on which the center of impact occurs is computed taking into

account the displacement velocity of this element. This relative

velocity is used to define the instantaneous dynamic pressure

of the impact and is also used to compute the amount of impacting

object consumed during the time interval between the previous

call to BPRESS and the current call to BPRESS (DLC). The amount

of object which is not yet consumed (BLR) and the (current best

estimate of the time at which the entire object will have been

consumed (TERM) are computed.

The vector matrix of influence coefficients are next

computed (Section 3.2.5) followed by computation of the onset

flow. The onset flow computation includes the effect of dis-

placement velocities. The system of linear equations which

determine the set of source densities (Section 3.2.7) is then

solved. The final major computation in BPRESS is the computa-

tion of flow velocities and pressure at the surface nodal points

which are approximately equivalent to the null points. The

pressures and the estimated time of impact durations are then

returned to the structural analysis executive routine.

4.5 PRESSURE DISTRIBUTIONS OBTAINED WITH THE LOADING MODEL

4.5.1 Obliii impacts on Rigid Surfaces

At the present time, steady-state experimental
pressure distributions are available only for real and

substitute birds impacting on rigid flat plates. Figure 9

shows a comparison between computed and measured steady-

state pressure distributions for a 45 degree impact angle. The

distribution shown in Figure 9 is along the major axis. Figure

10 shows the same type of comparison but for a more oblique

impact (25 degrees). Figure 11 shows pressure distributions

along the minor axis for 45 and 25 degree impacts. The
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computed results shown in these three Figures are based on the

simple onset flow model which was described in Section 3.1.2.

The limitations of this simple onset flow model are clearly

evident from these figures where it is observed that in the low

pressure region, near the edges of the projected area of the

bird on the plate, the computed pressure distribution is not

in agreement with the measured distribution. However, it can

be seen that the agreement between theoretical and experimental

results is excellent over the impact region where the pressures

are large. Many attempts have been made in the course of this

effort to develop better onset flow models which lead to

improved pressure distributions at the edge of the projected

area of the projectile on the impact surface. Except for normal

or nearly normal impacts, no reasonably simple onset flow model

has been discovered which yields better overall results than the

very simplest model, that is, the one used to generate the

results shown in Figures 9, 10, and 11.

4.O
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Figure 9. Normalized Steady Flow Pressure Distribution of
Nominal 1800 g Real Bird (chicken) Along Major
Axis at 45 Degree Impact
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4.5.2. Normal Impacts on Rigid Surfaces

Figure 12 shows the pressure distribution obtained

with the loading model using the simple onset flow description.

Experimental data points are also shown in Figure 12 along

with the theoretical pressure distribution for a two-dimensional

jet. The results shown in Figure 12 clearly show that the

simple onset flow description is not adequate for normal impacts.

The total force impacted to the impact surface corresponding

to the simple onset flow is only about one-half of the theoretical

value of pVbA where A is the cross-sectional area of the pro-

jectile. The pressure distribution for a two-dimensional jet

led to a gross over-estimate of the total impact force.

An approximate theoretical pressure distribution for an axisym-

metric normal jet impact developed by Schach (7) is also shown

in Figure 12 along with Schach's measured pressure distribution.

In the next section an improved onset flow model

based on a two-dimensional jet theoretical solution is presented

which yields excellent agreement with experimental pressure

distributions.

4.6 AN IMPROVED ONSET FLOW MODEL FOR NORMAL IMPACTS

The inadequacy of the simple onset flow description for

normal impacts is due to the fact that the spreading of the

edge of the fluid jet as it approaches the impact surface is

not taken into account. For oblique impacts this is not a

serious shortcoming since the major portion of the jet is

deflected from its oncoming path on that portion of the impacted

area which lies within the projected area of the projectile on

the impact surface. For normal impacts, however, much of the

momentum transfer occurs outside of the projected area of the

projectile on the impact surface.

Figure 13 shows a comparison of the jet boundary free

streamline shapes for normal impact of two-dimensional and

axisymmetric jets. This figure shows that the turning of an
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Figure 12. Comparison of Steady Flow Pressure Distributions
Along Major Axis for Normal Impacts
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Figure 13. Comparison of Jet Boundaries for Two-Dimensional
and Axisymmxetric Jets
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axisymmetric jet is much more abrupt than the turning of a two-

dimensional jet. From Figure 13 it is observed that the two-

dimensional jet boundary streamlines are not altogether dissim-

ilar from the axisymmetric jet if the Y axis of the two-dimensional

jet is shifted downward by an amount equal to the jet half-width.

This observation led to the following question. Suppose the two-

dimensional jet velocity field evaluated at Y/a in the vicinity

of 1 was used as an onset flow description. Is it possible to

find some value of Y/a that has a velocity field which when used
as an onset flow description would yield a pressure distribution

similar to the axisymmetric pressure distribution? Figure 14
shows pressure distribution that correspond to various values

of Y/a (denoted by Ll on Figure 14). From comparison of Figure

14 to Figure 12, it can bf seen that the pressure distribution

for Y/a (Ll) 1.25 is remarkably close to the measured axisym-

metric pressure distribution. Thus if the two-dimensional jet

velocity field evaluated at a non-dimensional distance from the

impact surface of Y/a - 1.25 is used as an onset flow descrip-

tion, a reasonably accurate pressure distribution for axisym-

metric normal impacts on rigid flat plates can be obtained. In

the present version of the loading model computer program, this

improved onset flow description is used instead of the simple

onset flow description when normal impacts are considered. The

theoretical tolution for the velocity field of the two-dimensional

jet impacting on a rigid flat plate at an incidence angle 8 is
presented in Appendix B, equations B-8 and B-9. For a normal
impact (8 - 90 degrees), it was found that, at Y/a - 1.25, the

normal component of velocity is approximately constant over the

jet width and is equal to

V' - 0.5 58

and the tangential velocity distribution given by

U' - 0.9 (1 - e -(x/a)) 59

Equations 58 and 59 are used to describe the onset flow velocity

field for normal impacts rather than the exact two-dimensional
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Figure 14. Comparison of Pressure Distributions for
Normal Impacts

velocity solution, which must be solved iteratively.

When using the loading model for normal impacts, the user

must define the impact area to be at least 1.8 times the

projectile radius in order to obtain a pressure distribution,

which gives a total impulse within 90 percent of the theoretical

value.

One may question the need of using the loading model

computer program for normal impacts of cylindrical projectiles.

Why not simply use the pressure distribution for axisymmetric

jets given in Figure 13. For normal impacts on rigid flat

surfaces an emperical equation for the pressure distribution

would certainly be a much simpler approach. However, for normal

impacts on deformable surfaces one cannot use a rigid flat

plate pressure distribution to describe the loading. The

present improved onset flow model using equation 59 to represent

the velocity tangent to the deformed surface has been found to

correctly describe the loading effects produced by pocketing

or cupping of the impact area on deforming surfaces.
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4.7 ONSET FLOW MODELING FOR OBLIQUE IMPACTS

A large amount of effort has been expended in attempts to

generate improved onset flow models for oblique models. Much of

this effort has centered on using two-dimensional jet theoret-

ical velocity field solutions in one form or another to model

the onset flow. While it has been possible to use two-

dimensional jet theory to develop onset flow description, which

yield pressure distribution that agree with the measured pressure

distributions for oblique impacts on rigid flat plates than is

possible with the simple onset flow model, these efforts have

not produced acceptable results for the following reason. The

programming and computer time required to compute the improved

onset flow velocity field becomes very large, to the point

where the onset flow computation becomes the major computation.

The simple onset flow model yields acceptable results for

impact angles less than or equal to 45 degrees. For normal or

nearly normal impacts (90 and 75 degrees) the improved onset flow

model discussed in the previous section has been found to yield

acceptable results. Thus at the present time no relatively

simple onset flow model is available for impacts over the 45

to 60 degree incidence angle range. At the present time this

is not a serious limitation to the scope of the work of the

contractual effort since angles of incidence in the 45 to 75

degre.e are not encountered in high performance turbine engines

(see Tables I and II for APSI and F-101 engine Bird-Blade

Incidence angles).

4.8 ADDITIONAL PROGRAMMING FOR NON-SLICING IMPACTS

As was mentioned in Section 4.2.2, when the loading modcl

is used for nun-slicing impacts, the location of the center of

impact and velocity components of the projectile are specified

by the user. The methods used to treat this type of impact

are identical to those developed by the authors of this report

for treating impacts on aircraft transparencies and are dis-

cussed in Appendix C.
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APPENDIX A

SYMBOL DEFINITION

In this appendix the symbols used in the program will be

defined and related to the equations derived or listed in

Section 3.

N : number of elements

XN(I),YN(I),ZN(I) : X, Y, and Z coordinates of the

input points defining the shape

of the impact surface.

UX(I),UY(I),UZ(I) : X, Y, and Z components of the

velocity at the null point

X(l,I),X(2,I),X(3,I),X(4,I) : X coordinates of the corner points

forming the element

Y(I,I),Y(2,I),Y(3,I),Y(4,I) : Y coordinates of the corner points

forming the element

Z(1,I),Z(2,I),Z(3,I),Z(4,I) : Z coordinates of the corner points

forming the element

TlX,TlY,TlZ : components of the diagonal vector

T1 joining corners 1 and 3

T2X,T2Y,T2Z : components of the diagonal vector

T2 joining corners 2 and 4

XNI,YNl,ZN1 : components of the cross product

vector N of the two diagonal

vectors
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UNX,UNY,UNZ : components of the unit normal

vector n

XAV,YAV,ZAV : coordinates of the average point

of the four corner points of the

element

Dl,D2,03,D4 : signed projection distance of the

four input points used to form

an element into the plane of the

element

XP1,XP2,XP3,XP4 : X coordinates of the corner points

of the quadrilateral element in

the reference coordinate system

YP1,YP2,YP3,YP4 : Y coordinates of the corner points
of the quadrilateral element in

the reference coordinate system

ZPl,ZP2,ZP3,ZP4 : Z coordinates of the corner points

of the quadrilateral element in

the reference coordinate system

Tl magnitude of the diagonal vector T1

-I.

TPlX,TP1Y,TP1Z : components of the unit vector tI in

the reference coordinate system used

to define the element coordinate system

TP2X,TP2Y,TP2Z : components of the unit vector t 2 in
the reference coordinate system used

to define the element coordinate system
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ZETAPI,ZETAPZ,ZETAP3,ZETAP4 • ZETA coordinates of the corner points

of the quadrilateral element in the

element coordinate system using the

average point as origin

ETAP1,ETAP2,ETAP3,ETAP4 : ETA coordinates of the corner points

of the quadrilateral element in the

element coordinate system using the

average point as origin

ZETAOR,ETAOR : coordinates of the centroid in the

element coordinate system using

the average point as origin

ZETAl,ZETA2,ZETA3,ZETA4 : ZETA coordinates of the corner

points of the quadrilateral ele-

ment in the element coordinate

system using the centroid as

origin

ETA1,ETA2,ETA3,ETA4 : ETA coordinates of the corner

points of the quadrilateral ele-
ment in the element coordinate

system using the centroid as

origin

XOYO,ZO : coordinates of the centroid of

the quadrilateral element in the

reference coordinate system

XX,YY,ZZ : coordinates of the calculated

null point in the element coor-

dinate system
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D12,D23,D34,D4l : length of the four sides of the

quadrilateral element which are

given in Equation 43

Rl,R2,R3,R4 : quantities defined by Equation 45

UlI,U22,U33,U44 : the X components of the velocity

induced by a side of the quadrila-

teral element at a null point

XUl,YVl,ZWl : X, Y, and Z components of the

velocity induced by a quadrila-

teral element at a null point

Vll,V22,V33,V44 : the Y components of the velocity

induced by a side of the quadri-

lateral element at a null point

Wll,W22,W33,W44 : Z components of the velocity

induced by a side of the quadri-

lateral element at a null point

RIR2X,R2R3X,R3R4X,R4RIX : quantities used to evaluate the

RlR2Y,R2R3Y,R3R4Y,R4RlY partial derivatives of Vx and Vy

DD12,DD23,DD34,DD41 (Equation 48) with respect to x

and y

VXX,VXY : partial derivatives of the X com-

ponent of the induced velocity V x
with respect to X and Y

VYX,VYY : partial derivatives of the Y com-

ponent of the induced velocity

Vy with respect to X and Y
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DELX,DELY : change in value of the coor-

dinates of the null point pro-

duced by one iteration in the

solution of the non-linear

equations for the null point

XPNPYPNPZPNP s coordinates of the null point of

the quadrilateral element in the

reference coordinate system

XNP,YNP,ZNP : coordinates of the i-th null

point in the j-th element coor-

dinate system

ZE21,ZE32,ZE43,ZEl4 : X components of the length of the

sides of the quadrilateral

element

ET21,ET32,ET43,ETl4 : Y components of the length of the

sides of the quadrilateral

element

E1,E2,E3,E4 : quantities defined by Equations

Hl,H2,H3,H4 44, 46, and 47

M12,M23,M34,M41

UPXVPYWPZ : velocity components induced at

the null point of the i-th element

by a unit source density on the

j-th element in the reference

coordinate system

AN(I,J) ; induced normal velocity at the

null point of the i-th element by

a unit source density on the j-th

element (Equation 49)
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VINFX,VINFY,VINFZ : components of a uniform onset

flow in the reference coordinate

system

ON(1) normal component of a uniform

onset flow at the null point of

the i-th element (Equation 52)

S(I) • source density on the i-th

quadrilateral element

Tl,T2,T3 components of the velocity

induced at the null point of the

i-th element by a source density

S(J) on the j-th element in the

reference coordinate system

Ul,Vl,Wl : components of the total flow

velocity at the null point of the

i-th element in the reference

coordinate system

VEL : magnitude of the total flow velo-

city at the null. point of the

i-th element

CP : pressure coefficient at a null

point

P(I) :pressure magnitude at the null

point of the i-th element
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APPENDIX B

TWO-DIMENSIONAL ONSET FLOW MODELING

To find the exact source density on the quadrilateral

elements, the onset flow needs to be specified. A two-

dimensional onset flow was modeled and found adequate to use

with axisymmetric jet impacting on flat surfaces at oblique

angles. The onset flow is assumed to be a two-dimensional jet

flow bounded by free streamlines, impacting on a flat surface.

A free streamline is a streamline which separates fluid in

motion from fluid at rest and is a line of constant speed and

pressure. To completely specify the onset flow, the boundary

of the jet, which is composed of free streamlines, along with the

velocity field and the stagnation point need to. be derived.

B-I DERIVATION OF VELOCITY FIELD EQUATIONS

The velocity on the free streamline is complex and denoted

by v and written as:
V= u-iv

(B-i)

Milne-Thomson expressed Z, where Z = x + iy, in terms of v , of

two impinging jets A1 and A2, meeting and branching off into two

other streams B1 and B2 (see Figure B-I) as:

7 r Kl I ( ) ( B -2 )

where hl, h2 , K1 , and K2 denote the breadths at infinity of A1 , A2 ,

B, and B2 ; and a1 - U, a2 - Ue i , b1 = Ue i , and b2 - Ue i 7 . s

is the angle between A1 and 81, a is the angle between A1 and A2,

and Y is the angle between A1 and B2. The expression for Z shows

that the motion is reversible. For our purposes, consider the

direct impact of two jets with the same asymptote as shown in
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Figure B-2. Assume that A1 and A2 are two uniform streams, then

the inflow and outflow must balance to preserve continuity.

hI +h2  MK + K2  (B-3)

From conservation of momentum in the x and y directions we

obtain:

hI+h 2 cos=- K1 cos P - K2 cos r=O

h2 sin= - K, sino -K 2 sin Y'=0 (B-4)

Now it is clear that a symmetrical solution must exist. Thus

K K2, CC =V, - 27r-

From Equations B-4 and B-3

COS.8rz I I -h 2Cos/e = h1 h

KI + K2

and h1 + h2  - 2K1

Solving for h1 and h2 we found that

hI = KI (I+ cose)

h2 = K, 01- cos.8)

Substituting these values in the expression of Z in Equation B-2

we get:

z. +coS,) log ( )(-Cos ) log (,+ v

(B-6)

I (1gi I /o I- v )
e G e i.8) a i(27r I Uei(2-/))
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Figure B-1. Z-Plane

B2

B,

Figure B-2. Two Jets with the Same Asymptote impinging
Directly
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From reversibility and symmetry, it is obvious that solving

Equation B-6 for u and v will give us the onset flow needed.

Non-dimensionalizing the velocities u and v by the magni-

tude of the impacting flow U, we get:

Z= lo[ .++,v ] + Cos tog[( U+iV')(I+uiv,),]

-(cos - sin log [,nU ivs)(cos i sin .8)]

(cos i sin )og [-(u-iv')(cos R+i sin 0)]

where u' - u/U and vt v/U. Rearranging Equation B-7 and

equating it with Z - x + iy gives:

+cos /3 log u__

l +v'sin R3-uI cos /3 +(u' sin G +v'cos

- cos /logO(-v'sing -Uc fj8)2(V COsS -u sin/3)2

(u'sin 0 + v'cos/3)
- sin 8 tar 'Ll cos/S+vsin /)]

tar - cosR u'sin/3)11
(I-u'cos /-v'sin /3)
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= 7- # tall. 1 4) ton + cos 13ton'-1 -

k1 /2 n I+uJ

+ tan (B-9)

-tan-(u'sin R8+v'cosu_ai(v'cos ' sin/l )1
l-uco 8+v'sin / Il-u cos 8-v' sin

+sin.0 (+ v's in13u'cos )2 + (usin .8 + v'cos B)22 (l-v' sin BS-u'cos) 2 + (v'cosS -u'sin B)2

Now the velocities u' and v' can be calculated, for any point

within the boundary with coordinates x and y, by solving simulta-

neously the two non-linear Equations (B-8) and (B-9). These

equations are solved by means of an iterative procedure.

The iterative procedure is as follows. Let U' andp
V' denote the p-th approximation of the velocity components u'p
and v' of any point with known coordinates x and y. The (p+l)-th

approximation is obtained by solving for U'p+ 1 and V'P 
1 in the

pair of linear algebraic equations

,(UV) = [(8,](P) , [ (P) +1  v

It I =a 82'
-8 2 (u av') (U'+i -U ,+[9vo V+l -VIP)
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The iterative procedure is terminated when the functions 6 and

62 are both less in absolute value than a small prescribed

value. The iterative procedure replaces the non-linear Equations

(B-8) and (B-9) by linear Equations (B-10), whose coefficients

are the derivatives of the non-linear functions. In Equation (B-

10) 61 and 62 are non-linear functions of U' and V t .

i

P/ logV1

lo A' 2+ v 

2 (I+u'2+V'2+ 2v's+nvv-2u'cos 8

,2 2 -a)j (B-li),- log(0 +u'2+ v -2 vsin ,8 2d cos R B

2u sin 6-2(u'2+v'2 )cos /6 sin 13
- Sn13 - (u'2+v'2)(sin2 R cos )- 2 u'cosR eJ

y 2 _ sin/1 I+u2 +v2 +2v sin /3-2u cos Re
= -- - - logj

, kl/2 7L I+u?'+v 2 -2v sin/3-2u cosi3

22v'cos 1-2u'v'+Cos .8 to n'  2u2v V,2n-
! . . Io [+ u - v 2 -2u' cos

+ to 2v'
+to [-(u-) -12
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The convergence is fairly rapid but care should be taken while

evaluating the arc tangents. They should be evaluated between -

and I.

B-2 BOUNDARY OF THE JET

Consider the flow described in Figure B-2, let the x-axis

be along the line of impact and the origin be the stagnation

point of the two flows when they meet and branch into a 90 degree

angle. If we regard the streamline y = 0 as a rigid barrier, we

will get a two-dimensional jet flow impacting on an infinite

plate at an oblique angle, which is the case we are studying

(Figure 8-3) and lets divide the flow in two regions, Region 1

from the centerline of the jet toward the positive x-axis and

Region 2 toward the negative x-axis. On a free streamline, the

complex velocity

V = U e - i8  (B-13)

If we substitute this in the expression for Z in Equation (B-2);

and equate the real and imaginary parts, we get the coordinates

(x,y) of a point on the free streamlines expressed in terms of the

parameter e. Substituting in Z we get:

I= _. _ja )e K k i
Z 7Fh 2 ae + K I e+k7Y> hI log sin 2

(B-14)

+ k2  T gk log (sin 8 

Substituting the values of hl, h2, K1 , K2 , a andY, calculated

from Equations B-3, B-4, and B-5 into Equation B-14 will give us

the expression for Z of interest in our problem, which is:
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-.. .... ... .+ ..sin8_\
Z W yl tan() cos It log

// sin 7
+cos 3- I sin. i+Iog -1 1o[.-)(4 -

- c [s + log i sin (-- - -

In region 1 6 is between -IT and -(27-B), let X = -l-8, then

8 = -'1-X and X/2 will be between zero and 'r/2 minus 8/2. By

substituting 8 by its value in Equation (B-15) we get:

+ I++ log 2 (in -Si

Using trigonometric identities an~d equating Z to x + iy we get:

+ / sing- log tan )+ cos/3 Ro[cosxcos. (B-17)
Cos. f/3 o 7r 2 32r

=+' os 3 + i/ log -si 37 + _X V Itn//

k T sin X
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For each value of X between zero and (7/2 - 8/2) we get the coor-

dinates x and y of a point of the free streamline. A better way

of writing the equation of the streamline is to calculate X in

function of y and substitute it in the expression for x. By

doing so we get:

2 =T tn 2 in (B-19)

w here k1/2-k1/2

o cotCOS

and 7] S sin co 2 h si (3-20)

sin " log -I[cos .2 s
-[2ta"r cot -T tanh[-r (hI 7ro 

]]]

cos[2ta' [cot 2 tanh[ (" sin

From Equation B- 20 we can tell that this free streamline has a

horizontal asymptote which is

y 1 - cos 8

since 7 tends to infinity as y approaches this value.

In region 2 8 is between -(27- 8 ) and -27, let X - (21 -8) -e,

then e = -(27T-8)-X and X/2 will be between zero and 8/2.

Repeating the same procedure used for region 1 we get:
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z +/log i cotj 2 2 )+Cos R log 2[ sin/x )]

2 sin X
+(Cos i si 2)ilogl.. I (B-2 1)

- 22 2

Equating it to Z - x + iy we get:

I x -7r sin 8-Ilog ton "' -"(-M ++ Cos .8 log 1
Ik.1o 7rn2 2 2/JO T'2

(B-22)
[7

x_ V

then in function of s is:

XX = ?. 2O + To 8

Yi7 sinX=2cfjc~e+smn3 ~I-cos .) (B-24)
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this free streamline also has a horizontal asymptote:

-=I+ cos
As the parameter 8 approaches its limit, in either region 1 or 2

the free streamline will approach an asymptote. In region 1 as e

approaches -(2r-$), X will approach (r-O). Let X -r -8-c, and

substitute it in Equations B-16, then take the limit as e*0 to

get the equation of the asymptote. Substituting the value of X in

the expression for X and Y we get:

as c 0

k1/2 sin log tan (Cos P lo

k 2 _r M2( 
-25)

2L4 2
1/2 - (Icosi)+sin log! +Io l+tan-)

Eliminate ln i/e,

X 2 sin R -g (cot P+ V [iny - 7v(I-COS )

k1/2 7r 2 [ksing6 2 sing3

_ [(i+ tan) (i_-tan ) B-26)

Repeating the same procedure in region 2, we get the equation of

the asymptote in this region. As 8 approaches -(21-$), X will

approach zero. Let X - e and substitute it in Equations B-22 and

B-23.
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As e- 0

(I+ Cos '8) +sinG (log sinp-log±)k1/2
(B-27)

Eliminate in c/2

k v i2 ( P -r) s i n .8 + lo g t a n ( - 2 8 )

+cos 3 log2 + 2kosin + sin 23 ¢ * sin/3 -log sin.

The next step will be to find the x distance from the stagnation
point to the centerline of the jet. To do so we have to find the
intersections of the asymptote with the x axis and add to it the

length of the projected radius on the x-axis. (See Figure 8-3.)

This distance from the stagnation point to the centerline

of the jet is denoted by C, and is equal to

I Cma+b

or
C- d - b

a is found by setting y equal to zero in Equation B-26, i.e.,

si (B-2)

log[I+ tan I- tan -
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and b is expressed as

b 2sn3(B- 30)

Then C becomes

7r1 2 sin)9 + i ,-o(cot
(B-31)

The other form of C, i.e, C -d -b, is used to check the

correctness of Equation B-31.

Figure B-3. The Two Regions of the Flow
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APPENDIX C

APPLICATION OF LOADING MODEL TO BIRD IMPACT
ON AIRCRAFT TRANSPARENCIES
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APPENDIX C

APPLICATION OF LOADING MODEL TO BIRD IMPACT
ON AIRCRAFT TRANSPARENCIES

Bird impacts on aircraft transparencies are different

from bird impacts on other aircraft surfaces because

transparencies are not rigid structures under bird loading.

The transparency can significantly move and deform during a

bird impact. Therefore, it is necessary to consider the

windshield response. A transparency may, in general, respond
to impact in two distinctly different modes which are termed

locally rigid and locally deforming.

In the locally rigid case the windshield does not signi-

ficantly deform in the local area of impact. See Figure C-i.

The relative velocity and impact angle change during the

impact process, which results in significant changes in the

magnitude and direction of the force and magnitude of the

pressures excerted on the windshield.

BEFORE IMPACT DURING IMPACT

5

Figure C-i. Locally Rigid Windshield Response.
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In the locally deforming case the local region of impact

undergoes significant deformation including local changes in

angle and shape. See Figure C-2. The windshield forms a pocket

around the bird which results in greatly increased local loading

and deformation.

In both modes the potential flow model is best fitted to

sol for the pressure distribution on the windshield during

impact. Then, with the use of a structural program, deformation

and velocity changes, for increments of time, can be calculated.

This procedure can be repeated till the bird is consumed.

C-i ADDITIONAL INFORMATION NEEDED FOR THE APPLICATION OF THIS
LOADING MODEL TO TRANSPARENCIES

Initially the known parameters are the components of the

bird velocity and the impact point coordinates. Since the sur-

face is going to be subjected to rotation and deformation it is

important to know at all times on what element the impact has

occured. This will help calculating the relative velocity and

non-dimensionalizing the velocities with respect to this rela-

tive velocity. The direction cosines calculated from the bird

velocity components will give us the direction of the impact.

SeR , , WINDSHIELD

I

Figure C-2. Locally Deforming Windshield Response

83



Let VBX, VBY, and VBZ be the components of the bird velocity VR.

where VR = VvBx2+ VBY -VBZ 2

then: cos a - VBX/VR
cos 8 - VBY/VR (C-i)

cosy - VBZ/VR

where a , y are the angles that the velocity vector makes,

respectively, with X, -Y, and Z axis. The next step is to find

the element where the impact occured. This is done by trans-

forming the components of bird velocity and the coordinates of

the impact point XI, YI, ZI into the element coordinate system.

This is accomplished by using Equation 33. Then, try to find the

intersection of the line, passing through the impact point with

the direction cosines found earlier and the plane (X-Y) of the

element.

The equation of the line is:

x-x' Y-Y' Z-Z'
- - (C- 2)cos a coss cos -

where X', Y', and Z' are the coordinates of the impact point in

the element coordinate system.

The intersection point is found by setting Z equal to zero.

The coordinates of the inters.ction point are:

X :XI-Z c os a
Cos "

yY'Z (C-3)
Y, ZCOSO

The impact point is on the element if the sum of the angles,
formed by joining the intersection point to the corner points of

the quadrilateral element, equal to 360 degrees. See Figure C-3.
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The onset flow still needs to be specified. It is set

equal to zero outside the projection of the bird on the

windshield. Within the projection it is equal to the direction

cosine minus the velocity of the element, i.e.,

Vw x a cos a - Uxi

VMY a cos a - Uyi

VMS - Cos Y - Uzi

where V.., V.y, and V z are the components of the velocity in the

x, y, and z directions and Uxi, Uyi, and Uzi are the components

of.the non-dimensional velocity of the element.

A testing procedure is set to find what elements are out-

side the projection of the bird on the windshield, i.e., what

elements have an onset flow of zero.

This is accomplished by calculating the perpendicular

distance between the null point of the element and the line of

impact. If this distance is greater than the radius of the bird,

the element is outside the projection of the bird and the onset

flow is equal to zero. Let XI, YI be the intersection point of

the line of impact and the plane of the element, then the perpen-

dicular distance D is:
r d+d 2 +d

(C-6)

where: di - cosy YI

d 2 - XI 0 cos Y (C-7)

d 3 M cos a (-YI) - cos 8 (-XI)

Now we have all the information needed for the application of the

loading model to bird impacts on aircraft transparencies.

85



REFERENCES

1. Wilbeck, J.S., nImpact Behavior of Low Strength Projectiles,"
AFML-TR-77-134, July 1973.

2. Allcock, A.W.R. and Collin, D.M., "The Development of a
Dummy Bird for Use in Bird Strike Research," National Gas
Turbine Establishment, London, England, CP-1071, June 1968.

3. Barber, J.P., Taylor, H.R., and Wilbeck, J.s., "Bird Impact
Forces and Pressures on Rigid and Compliant Targets,"
Technical Report AFFDL-TR-77-60, May 1978.

4. Hess, J.L. and Smith, A.M.O., "Calculation of Non-Lifting
Potential Flow About Arbitrary Three-Dimensional Bodies,"
Douglas Aircraft Company, Report No. E.S. 40622, March 1962.
Also published in Journal of Ship Research, 8, No. 2, 22,
September 1964, pp. 22-44.

5. Bauer, D.P. and Barber, J.P., "Experimental Investigation of
Impact Pressures Caused by Gelatin Simulated Birds and Ice,"
University of Dayton Report UDR-TR-78-114, November 1978.

6. Milne-Thompson, L.M., Theoretical Hydrodynamics, MacMillan
Company, New York, Chapter 11, 1960.

7. Schach, Von W., "Umlenkung eines Kreisformigen Flussigkeits-
strahles an einer obener Platte Senkrecht Zur Stromugst-
richtung," (Deflection of a Circular liquid Jet on a Plane
Plate Normal to the Stream.), Ingenieur Archiv, Vol. VI,
1935, pp. 51-59.

8. Alexander, A. and Cornell, R.W., "Interactive Multi-Mode
Blade Impact Analysis," NASA CR-159462, August 1978.

9. Hess, J.L. and Smith, A.M.O., "Calculation of Potential Flow
about Arbitrary Bodies," Progress in Aeronautical Sciences,
Vol. 8, edited by D. Kuchomann, Pergamon Press, 1967, pp. 1-138.

10. Hess, J.L., "The Problem of Three-Dimensional Lifting
Potential Flow and its Solution by Means of Surface
Singularity Distribution," Computer Methods in Applied
Mechanics and Engineering, 4(1974), pp. 283-319.

86


